Tight-binding description of graphene
نویسندگان
چکیده
We investigate the tight-binding approximation for the dispersion of the p and p* electronic bands in graphene and carbon nanotubes. The nearest-neighbor tight-binding approximation with a fixed g0 applies only to a very limited range of wave vectors. We derive an analytic expression for the tight-binding dispersion including up to third-nearest neighbors. Interaction with more distant neighbors qualitatively improves the tight-binding picture, as we show for graphene and three selected carbon nanotubes.
منابع مشابه
Tight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملEffect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملBerry curvature and energy bands of graphene
In this paper energy bands and Berry curvature of graphene was studied. Desired Hamiltonian regarding the next-nearest neighbors obtained by tight binding model. By using the second quantization approach, the transformation matrix is calculated and the Hamiltonian of system is diagonalized. With this Hamiltonian, the band structure and wave function can be calculated. By using calculated wave f...
متن کاملBerry curvature and energy bands of graphene
In this paper energy bands and Berry curvature of graphene was studied. Desired Hamiltonian regarding the next-nearest neighbors obtained by tight binding model. By using the second quantization approach, the transformation matrix is calculated and the Hamiltonian of system is diagonalized. With this Hamiltonian, the band structure and wave function can be calculated. By using calculated wave f...
متن کاملTight-binding description of patterned graphene
The existence of an energy gap of graphene is vital as far as nano-electronic applications such as nano-transistors are concerned. In this paper, we present a method for introducing arbitrary energy gaps through breaking the symmetry point group of graphene. We investigate the tight-binding approximation for the dispersion of π and π∗ electronic bands in patterned graphene including up to five ...
متن کامل